Comparation of fit (MAE/M) of all investigated models.

		duon of itt (MAE/M) of an investigated inc				loueis.	ieis.				AR						ANN				
	Protocol	Zero	o-one	Na Na	aïve appr	oacn	-	Holt-Winters		Taylor		MNK		LAD		ARIMA/SARIMA		MLP		RBF	
Time series		24 v	25 v	meas		_	MA		Basic			ш		⊢		Parameters		Structure	MAE/M		MAE/M
		24 variables	variables	1 measurement	day	week	A	Cumulative	c series	Taylor 1	Taylor 2	easurement	1 measurement, day, week	measurement	1 measurement, day, week						
W1	ТСР	71,70%		45,83%	93,70%	100,51%	51,85%	58,23%	45,92%	45,92%	45,94%	53,52%	54,03%	45,16%	45,07%	(7,0,0)(0,0,2)	50,22%	2-1-1 (-1,-3)	46,18%	4-7-1	47,33%
W1	UDP	80,92%		30,88%	104,69%	91,29%	38,50%	71,62%	30,19%	30,19%	25,54%	34,06%	33,07%	30,35%	29,70%	(2,1,0)(0,0,1)		1-2-1 (-1)	31,73%	3-7-1	33,28%
W1	ICMP	140,79%		31,80%	164,13%	127,14%	35,39%	57,89%	31,27%	31,27%	30,72%	32,68%	32,28%	31,71%	31,32%	(1,0,1)(1,0,1)	31,57%	4-2-1 (-1, -2, -3, -144)		6-7-1	36,63%
Т2	ТСР	15,27%		4,24%	16,07%	99,59%	5,13%	8,72%	4,19%	4, 20%	4,14%	4,22%	4,15%	4,21%	4,15%	(5,0,0)(0,0,4)	4,20%	1-1-1 (-1)		3-10-1	4,28%
Т2	UDP	39,59%		15,71%	37,34%	98,37%	18,03%	25,92%	15,87%	15,87%	17,76%	16,56%	16,64%	15,54%	15,58%	(0,1,3)(3,0,0)	16,20%	5-1-1 (-1, -2, -3, -144, -1009)		5-2-1	17,07%
Т2	ICMP	42,12%		8,62%	43,54%	54,99%	11,14%	22,99%	8,53%	8,53%	7,47%	8,71%	8,59%	8,60%	8,47%	(4,1,0)	8,60%	2-2-1 (-1, -2)		3-12-1	9,65%
Т3	ТСР	12,55%		4,09%	15,77%	99,73%	4,94%	8,70%	4,11%	4,11%	3,95%	4,06%	4,07%	4,06%	4,07%	(3,1,1)(0,1,2)	4,25%	1-1-1 (-1)		3-7-1	4,31%
Т3	UDP	28,33%		15,17%	36,17%	102,65%	17,55%	25,95%	15,45%	15,45%	15,53%	15,10%	15,12%	15,02%	15,09%	(1,0,1)(1,0,1)	14,99%	1-1-1 (-1)		5-2-1	22,13%
Т3		41,54%		8,72%	45,17%	60,98%	11,30%	19,67%	8,69%	8,69%	8,79%	8,82%	8,75%	8,71%	8,62%	(1,0,1)(1,0,1)		3-1-1 (-1, -3, -1008)	8,91%	5-2-1	21,86%
		166,85%		50,53%			61,59%					58,48%	60,06%	50,25%	51,33%						
	1	36,66%				101,58%	29,17%					32,12%	30,36%	30,28%	29,31%						
M4		18,68%				27,59%	14,34%					16,03%	15,76%	14,48%	14,35%						
15				40,36%			46,94%					48,46%	51,45%	39,66%	42,71%				1		
15		81,31% 153,62%		52,50% 147,57%			51,93% 148,89%					62,28% 149,86%	63,29% 112,29%	49,47% 100,03%	51,26% 75,78%						
MN	,	158,67%			172,90%			110,23%	64.400/	64,47%				64,72%	62,40%	(3,0,0)	65,86%	2-2-1 (-1, -2)	75,72%	6-10-1	82,64%
		48,60%					31,28%			30.03%				29,68%	29,25%	(4 0 0)(0 0 2)		4-1-1		3-7-1 (-1,-2,-3)	29,11%
																		3-1-1		3-13-1	10,77%
	I ICMP						11,29%		10,57%		10,58%		11,40%	11,13%	11,08%			2-1-1	41,14%	(-1,-2,-3) 4-10-1	38,97%
11 11	ТСР				111,35%		41,63%			36,42% 49,55%				36,93%	35,45%	(6 0 0)(1 0 0)		5-1-1		(-1, -2, -3, -1008) 5-8-1	49,24%
11		87,97%					50,98%		49,55%	110,65%			54,78%	50,83%	47,99%	(4 0 0)(0 0 1)		(-1, -2, -3, -144, 1008) 1-1-1		3-7-1	114,43%
11	ICMP	159,42%		110,38%	180,98%	169,29%	113,97%	132,34%	110,65%	-	71,88%	135,20%	137,09%	94,57%	97,25%	(1,0,0)(0,0,1)	102,21%		1	(-1,-2,-144)	

Source: Szmit M., Szmit A.: Use of Holt-Winters method in the analysis of network traffic. Case study, Springer Communications in Computer and Information Science vol. 160, 18th Conference Computer Networks, 2011, pp. 224-231, ISSN: 1865-0929; ISBN: 978-3-642-21770-8; Szmit M.: Využití nula-jedničkových modelů pro behaviorální analýzu síťového provozu, [in:] Internet, competitiveness and organizational security, Tomas Bata University Zlín 2011, pp. 266-299, ISBN 978-83-61645-16-0; Szmit M., Szmit A.: Usage of Pseudo-estimator LAD and SARIMA Models for Network Traffic Prediction. Case Studies, Communications in Computer and Information Science, 2012, Volume 291, 229-236; Szmit M., Szmit A.: Usage of Modified Holt-Winters Method in The Anomaly Detection of Network Traffic. Case Studies, Journal of Computer Networks and Communications, vol. 2012, DOI: 10.1155/2012/192913; Szmit M., Adamus S., Bugała S., Szmit A.: Usage of Holt-Winters Model and Multilayer Perceptron in Network Traffic Modelling and Anomaly Detection, Informatica Vol. 36, Nr 4 (2012), pp. 359-368 ISSN: 0350-5596; Jašek R., Szmit A., Szmit M.: Usage of Modern Exponential-Smoothing Models in Network Traffic Modelling, Advances in Intelligent Systems and Computing Volume 210, 2013, pp. 435-444; Szmit A., Szmit M.: Usage of RBF Networks in prediction of network traffic, Federated Conference on Computer Science and Information Systems, Kraków 2013.